

Mark Scheme (Results)

November 2023

Pearson Edexcel International GCSE In Mathematics A (4MA1) Paper 1H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2023 Question Paper Log Number P73465A Publications Code 4MA1_1H_MS_2311 All the material in this publication is copyright © Pearson Education Ltd 2024

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Types of mark

- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- o cao correct answer only
- o ft follow through
- o isw ignore subsequent working
- o SC special case
- oe or equivalent (and appropriate)
- dep dependent
- o indep independent
- eeoo each error or omission

• No working

If no working is shown then correct answers normally score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

• With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review.

If there is a choice of methods mark the one that leads to the answer on the answer line. If there is no answer given then mark the method that gives the lowest mark and award this mark.

If there is no answer on the answer line then check the working for an obvious answer.

• Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

• Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

Interr	International GCSE Maths							
Apar	Apart from questions 2b, 10, 13b, 19 where the mark scheme states otherwise the correct answer, unless clearly obtained by an							
incor	incorrect method, should be taken to imply a correct method							
	Q	Working	Answer	Mark	Notes			
1	(a)		5 7 9 11 13 15	1	B1 all numbers must be present with no			
					repeats. Numbers can be in any order			
	(b)		5 15	1	B1			
	(c)		6 8 12 14 16	1	B1			
					Total 3 marks			

2	(a)		6 <i>p</i> (2 <i>q</i> -3)	2	B2 If not B2 then award B1 for any correct partial factorisation with 2 factors taken out $(2p \text{ or } 3p \text{ or } 6 (2 \times 3))$ outside of the bracket 2p(6q-9) or 3p(4q-6) or 6(2pq-3p) or allow 6p and one error inside the bracket eg 6p(2q-a) or 6p(b-3) oe eg $6p(2q+3)$				
	(b)	y + (3y + 7) + (2y - 5) (= 6y + 2) oe or $56 - 7 + 5 (= 54)$		4	M1 M2 for y + (3y + 7) + (2y - 5) = 56 M3 for $(56 - 7 + 5) \div 6 (= 9)$				
		y + (3y + 7) + (2y - 5) = 56 or " $6y + 2$ " = 56 oe eg $6y = 54$			$\begin{array}{c c} M1 & \text{oe} & & \text{or} \\ \text{or} & \\ 6y = 54 & \text{oe} \end{array} \qquad \qquad \begin{array}{c} \text{or} & \\ 54 \div 6 \ (=9) \end{array}$				
		$(y=)\frac{56-2}{6}(=9)$ oe			M1 for a correct method to find the value of y or the correct value of y				
			13		A1 (or for 9 (gold), 34 (silver) and 13 (zinc) seen) dep on sight of $(y =)$ 9 SCB2 for 16.6 (17 if rounded 16.6 seen) (if no other marks awarded) SCB1 for $5y + 2 = 56$ oe (if no other marks awarded)				
					Total 6 marks				

3	$1500 + (36 \times 450) (= 17\ 700)$		4	M1
	"17 700" – 12 500 (= 5200) oe			M1
	or $\frac{"17700"}{12500}$ (=1.416) oe			
	$\frac{5200''}{12500}$ (× 100) oe or 0.416 (× 100) or			M1
	$\underbrace{\overset{\mathbf{\ddot{c}}}{\underbrace{\mathbf{\ddot{c}}}}_{\mathbf{\dot{c}}} 17\ 700"}_{\mathbf{\dot{c}}} 100 \underbrace{\overset{\mathbf{\ddot{c}}}{\underbrace{\mathbf{\dot{c}}}}}_{\mathbf{\dot{c}}} 100$) or 141.6 (-100)			
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	41.6		A1 allow 42 from correct working
				Total 4 marks

4 (a)	1 - 0.58 (= 0.42) or $100 - 58 (= 42)0.58 + 2x + x = 1$ oe		2	M1
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	0.14		A1 oe eg 14% (must have % sign) or $\frac{7}{50}$ etc SCB1 for an answer of 14 if no other marks are awarded
(b)	250×0.58 oe or $58 + 58 + (58 \div 2)$ oe		2	M1 or for $\frac{145}{250}$
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	145		A1 cao
				Total 4 marks

5	$\pi \times 20 (= 20\pi = 62.8(31)) \text{ oe or}$ $2 \times \pi \times (20 \div 2) (= 20\pi = 62.8(31)) \text{ oe or}$ $0.5 \times \pi \times 20 (= 10\pi = 31.4(15)) \text{ oe or}$		3	M1 for use of $\frac{1}{2}\pi d$ or πr or πd or $2\pi r$ oe with $d = 20$ or $r = 20 \div 2$ (= 10)
	$3 \times (``62.8'' \div 2) + 20 \div 2 + 20 \div 2$ oe or $1.5 \times (``62.8'') + 20 \div 2 + 20 \div 2$ oe			M1 for a complete method
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	114		A1 114 – 115 SCB1 for awrt 471
	~			Total 3 marks

6	eg 1- $\frac{1}{6} \frac{1}{6} = \frac{5\ddot{0}}{6\dot{\sigma}}$ or 1 - 0.16(666) (= 0.83(333) oe or 100(%) - 16(.666)(%) (= 83(.333)(%)) oe or 1 - 0.2 (= 0.8) oe or 100(%) - 20(%) (= 80(%))		4	M1 Allow eg 1 - 0.16 (= 0.84) (= 84(%)) 1 - 0.17 (= 0.83) (= 83(%)) rounded or truncated
	140, " $\frac{5}{6}$ " (= 168) oe or 140 ÷ "0.83(333)" (= 168) oe eg 140 ÷ 83.33 × 100 (=168) or 136 ÷ "0.8" (= 170) oe eg 136 ÷ 80 × 100 (= 170)			M1 Allow eg $140 \div "0.84" = 166(.666)$ $140 \div "0.83" = 168(.674)$ rounded or truncated
	140, " $\frac{5}{6}$ " (= 168) oe or 140 ÷ "0.83(333)" (= 168) oe and 136 ÷ "0.8" (= 170) oe			M1 Allow eg $140 \div "0.84" = 166(.666)$ $140 \div "0.83" = 168(.674)$ rounded or truncated
	<i>Working not required, so correct answer scores full marks (unless from obvious incorrect working)</i>	2		A1 Allow –2
				Total 4 marks

7	5 ³ ×7 ² ×11 ⁴	2	B2 Accept $5^3 \cdot 7^2 \cdot 11^4$ allow 89 676 125 with $5^3 \times 7^2 \times 11^4$ seen If not B2 then award B1 for $5^p \times 7^q \times 11^r$ with two of p = 3, q = 2 and $r = 4(or omission of one with others fullycorrect) orfor 89 676 125 without 5^3 \times 7^2 \times 11^4 seenorfor 5 × 5 × 5 × 7 × 7 × 11 × 11 × 11 × 11or for an answer of5^3 + 7^2 + 11^4 or 5^3 \cdot 7^2 \cdot 11^4$
			$5^{3} + 7^{2} + 11^{4} \text{ or } 5^{3}, 7^{2}, 11^{4}$ Total 2 marks

8 (a)	$8x-3x \ge -10+4 \text{ or}$ $5x \ge -6 \text{ or}$ $10-4 \ge -8x+3x \text{ or}$ $6 \ge -5x$		2	M1 for <i>x</i> terms on one side and numbers on the other. Condone = rather than \leq or any other sign for this mark.
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	$x^{3} - \frac{6}{5}$		A1 oe eg - $\frac{6}{5}$ £ x Must have correct sign on answer line (sight of correct answer in working space and just -1.2 on answer line gains M1 only)
(b)		$y \ge 2$	3	B1 oe eg $y - 2 \ge 0$ allow > in place of \ge
		$x \le 7$		B1 oe eg $x - 7 \le 0$ allow < in place of \le
		$y \le x$		B1 oe eg $y - x \le 0$ allow $<$ in place of \le
				SCB1 for $y=2$, $x=7$ and $y=x$
				SCB2 for $y \le 2$, $x \ge 7$ and $y \ge x$
				or $y < 2, x > 7$ and $y > x$
				Allow $<$ in place of \le or vice versa
				Total 5 marks

9 (a))		0.000 587	1	B1 allow 0.000 587(000) or .000 587
(b)		8.4×10^{7}	1	B1 allow 8.4(000) $\times 10^7$
(c))	$8.5 \times 10^{10} \div 1.47 \times 10^{9} (= \frac{8500}{147}) \text{ or}$ $85\ 000\ 000\ 000\ \div 1\ 470\ 000\ 000\ (= \frac{8500}{147})$		2	M1
		Working not required, so correct answer scores full marks (unless from obvious incorrect working)	57.8		A1 oe eg 5.78 × 10 awrt 57.8 allow 58 or 5.8 × 10 with correct working seen
					Total 4 marks

10	$\tan 40 = \frac{8}{(AD)}$ or $\frac{(AD)}{\sin(90-40)} = \frac{8}{\sin 40}$ oe or		5	M1
	$(AC =)\frac{8}{\sin 40} (= 12.4(457)$			
	(D = foot of the perpendicular line)			
	$(AD =)\frac{8}{\tan 40}$ (= 9.5(3)) or			M1
	$(AD =) \frac{8}{\sin 40} \times \sin(90 - 40) (= 9.5(3))$ oe or			
	$(AD =)\sqrt{"12.4"^2 - 8^2} = \sqrt{90.8(977)} (= 9.5(3))$ oe or			
	$(BC^2 =)$ "12.4" ² +22 ² -2×"12.4"×22×cos 40 (= 219.4) oe			
	(DB =) 22 - "9.5(3)" (= 12.4(659 = 12.5) or			M1
	$(BC =) \sqrt{12.4^2 + 22^2 - 2 \times 12.4^2 \times 22 \times \cos 40} = \sqrt{219.4} = 14.8)$ oe or			
	$(BC =)\sqrt{8^2 + (22 - 9.5(3))^2} (= 14.8)$ oe			
	$\tan x = \frac{8}{"12.5"}$ or $\cos x = \frac{"12.5"}{"14.8"}$ or $\sin x = \frac{8}{"14.8"} (\times \sin 90)$ oe			M1
	or $\sin x = \frac{\sin 40}{"14.8"} \times "12.4"$ oe or $\cos x = \frac{22^2 + "14.8"^2 - "12.4"^2}{2 \times 22 \times "14.8"}$ oe			
	Working required	32.7		A1 Allow 32.3 – 32.8
				dep on a correct
				Total 5 marks
				i ovar o marins

11	$\frac{9x}{12x} + \frac{2(5-x)}{12x} \text{ oe or or } \frac{3(6x)}{24x} + \frac{4(5-x)}{24x} \text{ oe or } $ $\frac{3(6x)}{4(6x)} + \frac{4(5-x)}{4(6x)} \text{ oe or or } \frac{18x}{24x} + \frac{20-4x}{24x} \text{ oe or } $ $\frac{3\times3x + 2(5-x)}{12x} \text{ oe } $		3	M1 for two correct fractions with common denominator with the intention to add or a single correct fraction
	$\frac{9x+10-2x}{12x} \text{ oe or } \frac{18x+20-4x}{24x} \text{ oe or}$ $\frac{14x+20}{24x} \text{ oe or}$			M1 for a correct numerator over a single denominator with brackets expanded and correct signs Allow $\frac{7x}{12x} + \frac{10}{12x}$
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	$\frac{7x+10}{12x}$		A1 oe $\frac{10+7x}{12x}$
				Total 3 marks

12 (a)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Correct <i>y</i> values	2	B2 for all correct (B1 for 2 or 3 correct)
(b)			2	M1 ft their table dep on B1 scored in (a) for 4 or 5 points plotted correctly (tolerance within or on the circles on the overlay)
Tol				A1 for a fully correct graph – points plotted correctly (within or on the circles on the overlay) and intention to join with a smooth curve (be generous if intention is clearly a smooth curve through all points) Ignore curve drawn for $x < -2$ and $x > 2$
(c)		D	1	B1
				Total 5 marks

13 (a)		25	1	B1 Allow 25 – 25.5
(b)	80 - [74, 76] (= [4, 6]) or		3	M1 Allow a clear method to read off from
	80 – (their value from a correct method)			cf diagram at 50 seconds and subtract this
	"[74,76]"			value from 80 or
	$\left \frac{1}{200} \times 100 (= [92.5, 95]) \right $			read the value and use a method to find
	80			this as a percentage of 80
	$\frac{"[4,6]"}{80} \times 100 \ (=[5,7.5]) \ \text{oe or}$			M1ft if previous M1 awarded
	$100 - \left(\frac{"[74, 76]"}{80} \times 100\right)$ oe or			
	"[4, 6]" ÷ 0.8 oe			
	Working required	6.25		A1 dep on M1
				Allow range $5 - 7.5$
				Total 4 marks

14	$(AOC =)180 - (2 \times 52) (= 76)$		3	M1 must not be contradicted on diagram
	Working not required, so correct answer scores	38		A1 If labelled on the diagram then it must
	full marks (unless from obvious incorrect			be in the correct place
	working)			
		2 correct reasons		B1 dep on M1 for at least 2 valid reasons for their method including a correct circle property angle at the centre is $2 \times$ (double/twice) angle at circumference or angle at circumference is $\frac{1}{2}$ (half) angle at centre and one from (i) Base angles in an isosceles triangle (are equal) (ii) Angles in a triangle sum to 180° or angles in a triangle sum to 180°
				Total 3 marks

14	tangent drawn at A with a right angle shown		3	M1 for a correct tangent drawn with right
ALT	or			angle shown or
	38° shown between the line AC and the			38° shown between the line AC and the
	tangent at A			tangent at A
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	38		A1 If labelled on the diagram, then it must be correct
		38 and correct reason		B1 dep on M1 for 38 and <u>alternate</u> <u>segment</u> theorem and angle between <u>radius</u> /diameter and <u>tangent</u> = 90
				Total 3 marks

15	3nx-4x=3p+n		3	M1 for removing the denominator and
				expanding in a correct equation
	3nx-n=3p+4x or			M1ft for gathering terms in <i>n</i> on one side
	-4x - 3p = n - 3nx			and other terms the other side in an equation
				ft their equation dep on 2 terms in <i>n</i> and 2
				other terms
	Working not required, so correct answer scores full marks (unless from obvious	$n = \frac{3p + 4x}{3x - 1}$		A1 oe $n = \frac{-3p - 4x}{1 - 3x}$ oe (must see " $n =$ "
	incorrect working)			on answer line or in working)
				Total 3 marks

16	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = 3 \times 4x^2 - 8 \ (= 12x^2 - 8)$		4	B2 for $3 \times 4x^2 - 8$ or $12x^2 - 8$ (with no other terms) (B1 for one term, ie $3 \times 4x^2$ or $12x^2$ or -8)
	$"12x^2 - 8" = \frac{1}{3}$			M1 for equating their initial derivative with the given gradient. Derivative must be a quadratic (dep on B1)
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	$\pm \frac{5}{6}$		Aloe Ignore y values Allow $\pm 0.83(333)$ or $\pm \sqrt{\frac{25}{36}}$ oe
				Total 4 marks

17	$24 \div 20 (= 1.2)$ or		3	M1 for use of area to represent frequency
	a correct value on the FD scale or			or
	10 small squares = 1 orange or			one correct frequency from the
	25 small squares (1 large square) = $24 \div 9.6 =$			$1 = f 4^{\text{th}} \log(0) = r$
	2.5 oranges oe			$\frac{-}{3}$ of 4 bar (9) or
	or			2
	9 or 18 or 27 correctly assigned			$\frac{2}{2}$ of 4 th bar (18) or
	or			3 The 44b here (27)
	3x V (1) (1) (2)			$\frac{1}{1} = 4 \ln \frac{1}{2} \ln $
	$\frac{1}{4} + \frac{1}{3}$ where x is their frequency of 3 rd bar			$[NO1 3^{-6} bar = 44]$
	and wis their frequency of \mathcal{I}^{th} har			
	and y is then frequency of 4 bar			A method to show the student is finding
				$\frac{3}{2}$ of 3^{rd} bar $+\frac{1}{2}$ of 4^{th} bar
				4 3
				(frequencies to be seen on diagram or
				identified in working)
	eg			M1 for a complete method
	$(15 \times 2.2) + (5 \times 1.8)$ oe or			
	33 + 9 or $44 + 27 - 11 - 18$ or			
	$(330 + 90) \div 10$ oe or			
	$(13.2 + 3.6) \times 2.5$ oe			
	Working not required, so correct answer	42		A1
	scores full marks (unless from obvious			
	incorrect working)			
	0/			Total 3 marks

18	(angle ABC =) 54 + (180 - 132) (= 102)		5	M1 for finding angle <i>ABC</i>
	$(AC^{2} =)3.6^{2} + 8.4^{2} - 2 \times 3.6 \times 8.4 \times \cos[102]$			M1 for applying the cosine rule correctly
				ft <i>their</i> 102 provided less than 180 and
				not 90
	$(AC =)$ $\sqrt{36^2 + 84^2 - 2 \times 36 \times 84 \times \cos[102]}$			M1 for finding <i>AC</i>
				ft <i>their</i> 102 provided less than 180 and
	or $\sqrt{96.094}$ or $9.8(02)$			not 90
	$([9.8]+8.4+3.6) \div 6 (= 3.63(3))$ or			M1 dep on previous M1M1 for finding
	$(1 - 1)^{-1} (1 $			the time taken to complete the journey
	$21.8(02) \div 6 (= 3.63(3))$ oe			(may be done in parts)
	Working not required, so correct answer	3 hours and		A1
	scores full marks (unless from obvious	38 minutes		Allow 3 hours and $(37 - 38)$ minutes
	incorrect working)			
				Total 5 marks

19	a = 3 a	nd $d = 4$		6	M1 for <i>a</i> and <i>d</i> (can be embedded in the formula for S_n)
	$\frac{n}{2} [2(3) + (n-1)4] = 7260 \text{ or}$	$\frac{n}{2}(3+x) = 7260$ and			M1 Allow $n = x$
	$\frac{n}{2}(2+4n) = 7260 \text{ oe}$	$\overline{x} = 3 + (n-1)4$			
	eg $4n^2 + 2n = 14520$ oe $2n^2 + n - 7260(= 0)$ oe $8n^2 + 4n - 29040(= 0)$ oe	eg $x^{2}+4x-58077=0$ oe $x^{2}+4x=58077$			M1ft dep on previous M1 for forming a three term quadratic in any form of $ax^2 + bx + c$ (= 0) where at least 2 coefficients (a or b or c) are correct
	eg (2n+121)(n-60)(=0) eg	eg (x-239)(x+243)(=0) eg			M1ft dep on previous M1 for a method to solve their 3 term quadratic using any correct method
	$(n=) \frac{-1 \pm \sqrt{1^2 - 4 \times 2 \times -7260}}{4}$	$(x =) \frac{-4 \pm \sqrt{4^2 - 4 \times 1 \times -58077}}{2}$			Allow one sign error and some simplification – allow as far as eg
	$eg \\ 2\left[\left(n+\frac{1}{4}\right)^2 - \left(\frac{1}{4}\right)^2\right] = 7260$	eg $(x+2)^2 - (2)^2 = 58077$			$\frac{-1\pm\sqrt{1+58080}}{4} \text{ or } \frac{-4\pm\sqrt{16+232308}}{2}$
	(n =) 60 (and (n =) -60.5)	(x =) 239 (and (x =) -243)			A1 dep on M3 Ignore negative values
	Working required		239		A1 cao dep on M3 SCB2 if not shown clear algebraic working but give an answer of 239 (with method shown involving $a = 3$ and $d = 4$) as question asks for algebraic working. 239 alone gains zero marks
					Total 6 marks

20	$\sqrt{\frac{49}{121}} \left(= \frac{7}{11} = 0.63(63) \right)$		4	M1 Accept 0.63(63) or 63(.6363)% rounded or truncated
	$1 - "\frac{7}{11}" \left(= \frac{4}{11} = 0.36(36) \right)$			M1 Accept 0.36(36) or 36(.3636)% rounded or truncated
	$2 \times \frac{7}{11} \times "\frac{4}{11}" \text{ or } 1 - \left(\frac{49}{121} + "\left(\frac{4}{11}\right)^2 "\right) \text{ or }$ 2 × "0.63" × "0.36" or 1 - (0.40(49) + ("0.36")^2)			M1 for a complete method
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	$\frac{56}{121}$		A1 oe Allow 0.46(280) or 46(.280)%
				Total 4 marks

21	$(FE =) 28 \sin 30 (= 14)$ or		5	M1 for a method to find <i>FE</i> or <i>DE</i>
	$(FE =) 28 \cos 60 (= 14)$ or			
	$(DE =) 28 \cos 30 (= 14\sqrt{3} = 24.2(48))$ or			
	$(DE =) 28 \sin 60 (= 14\sqrt{3} = 24.2(48))$			
	$(FE =) 28 \sin 30 (= 14)$ or			M1 for a method to find <i>FE</i> and <i>DE</i>
	$(FE =) 28 \cos 60 (= 14)$ or			first M1)
	$(FE =)\sqrt{28^2 - "24.2"} (= \sqrt{196} = 14)$			
	and			
	$(DE =) 28 \cos 30 (= 14\sqrt{3} = 24.2(48))$ or			
	$(DE =) 28 \sin 60 (= 14\sqrt{3} = 24.2(48))$ or			
	$(DE =)\sqrt{28^2 - "14"^2} \left(=\sqrt{588} = 14\sqrt{3} = 24.2(48)\right)$			
	$(AF =)\sqrt{53^2 - 28^2} (=\sqrt{2809 - 784} = \sqrt{2025} = 45)$			M1 (indep) for finding AF
	$\frac{1}{2}$ × "14" × "14 $\sqrt{3}$ " × "45" oe or			M1 for finding the volume of the prism
	$\frac{1}{2}$ × "14" × "24.2" × "45"			
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	7638		A1 allow in the range 7623 – 7639
				Total 5 marks

22	$\frac{-10-0}{8-0} \left(= -\frac{10}{8} = -\frac{5}{4} \right) \text{oe}$		6	M1 for the gradient of the radius
	$\begin{bmatrix} -\frac{5}{4} \end{bmatrix} \times m = -1 \text{ oe}$ or			M1ft for finding the gradient of the line perpendicular to the gradient of <i>their</i> radius for the gradient of L
	$(m =)$ " $\frac{4}{5}$ " oe			
	$-10 = "\frac{4}{5}"(8) + c \text{ or } (c =) -\frac{82}{5} = -16.4$			M1ft for substitution to find 'c' which is the y intercept (R)
	or $v10 = "\frac{4}{2}"(x - 8)$			
	5 5			
	$0 = "\frac{4}{5}"x + "-\frac{82}{5}" \text{ oe}$			M1ft for substitution to find x intercept (Q)
	or			
	$10 = "\frac{4}{5}"(x-8)$ oe			
	or			
	$(x=)\frac{41}{2}=20.5$			
	$\sqrt{("-16.4")^2 + ("20.5")^2}$ or			M1ft for a complete method to find <i>RQ</i>
	$\sqrt{("16.4")^2 + ("20.5")^2}$			
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	26.3		A1 allow 26.2 – 26.64
				Total 6 marks

22 ALT	(radius =) $\sqrt{8^2 + 10^2} (= 2\sqrt{41} = 12.8)$		6	M1 for finding the radius of the circle
	$\tan^{-1}\left(\frac{10}{8}\right) (=51.3)$			M1 for finding the angle between the <i>x</i> -axis and the radius
	or $\tan^{-1}\left(\frac{8}{10}\right) (= 38.7)$			the angle between the <i>y</i> -axis and radius
	$(x=)\frac{"12.8"}{\cos"51.3"}(=20.4(7205))$ or			M1ft For finding one of the lengths $x (OQ)$ or $y (OR)$ or PQ or PR
	$(y=)\frac{"12.8"}{\cos"38.7"}(=16.4(0120))$			
	(PQ =)"12.8"×tan"51.3"(=15.9(7701)) or			
	(PR =)"12.8"×tan"38.7"(=10.2(5473))			
	$(x=)\frac{"12.8"}{\cos"51.3"}(=20.4(7205))$ and			M1ft finding both of the lengths x and y or
	$(y =)\frac{"12.8"}{\cos"38.7"} (=16.4(0120))$			both of the lengths PQ and PR
	(PQ =)"12.8"×tan"51.3"(=15.9(7701)) and			
	(PR =)"12.8"×tan"38.7"(=10.2(5473))			
	$\sqrt{("20.4")^2 + ("16.4")^2}$ or			M1ft for a complete method to find <i>RQ</i>
	15.9(7701) + 10.2(5473)			
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	26.3		A1 allow 26.2 – 26.64
				Total 6 marks

23	$\sqrt{\frac{7776}{486}} \text{ or } \sqrt{16} \text{ or } 4 \text{ oe or} \sqrt{\frac{486}{7776}} \text{ or } \sqrt{\frac{1}{16}} \text{ or } \frac{1}{4} \text{ oe} $	Alternative for M2 a correct equation linking area and volume $(486)^{3} (2^{x+4})^{2}$		5	M1 for a correct linear scale factor
	$8^{x} = "\left(\sqrt{\frac{7776}{486}}\right)^{3} " \times 2^{x+4} \text{ oe eg}$ $8^{x} = 4^{3} \times 2^{x+4} \text{ oe or}$ or $\frac{1}{8^{x}} = "\left(\sqrt{\frac{486}{7776}}\right)^{3} " \times \frac{1}{2^{x+4}} \text{ oe}$	$\left(\frac{7776}{7776}\right)^{3} = \left(\frac{2}{8^{x}}\right)^{3} \text{ oe or}$ $\left(\frac{7776}{486}\right)^{3} = \left(\frac{8^{x}}{2^{x+4}}\right)^{2} \text{ oe}$			M1 for setting up a correct equation for volume
	eg $2^{3x} = 2^6 \times 2^{x+4}$ or $(4^{\frac{3}{2}})^x = 4^3 \times 4^{\frac{1}{2}(x+4)}$ $\frac{1}{2^{3x}} = \frac{1}{2^6} \times \frac{1}{2^{x+4}}$ oe or 3x = 6 + x + 4 oe or x = 5	$\frac{1}{2^{12}} = \frac{2^{2x+8}}{2^{6x}} \text{ oe or}$ $2^{12} = \frac{2^{6x}}{2^{2x+8}} \text{ oe or}$ $12 = 6x - 2x - 8 \text{ oe or}$ $x = 5$			M1 for a correct equation using just powers of 2 or powers of 4 (or 8 or 16) or a correct linear equation in x or the correct value for x
	$3^5 \div 4$ oe or $3^5 \times \frac{1}{4}$ oe				M1 a correct calculation for the height of solid B
			60.75		A1 oe accept 60.8 or 61 (from correct working)
					Total 5 marks

24 (a)	(a =) -4	2	B1 for $(a =) -4$
	(b =) 6		B1 for (<i>b</i> =) 6
(b)	(p =) 3	2	B1 for (<i>p</i> =) 3
	(q =) 45		B1 for $(q =) 45$
			Total 4 marks

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom